Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chemosphere ; 312(Pt 1): 137178, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2104525

ABSTRACT

The COVID-19 epidemic seriously threats the human society and provokes the panic of the public. Personal Protective Equipment (PPE) are widely utilized for frontline health workers to face the ongoing epidemic, especially disposable face masks (DFMs) to prevent airborne transmission of coronavirus. The overproduction and massive utilization of DFMs seriously challenge the management of plastic wastes. A huge amount of DFMs are discharged into environment, potentially induced the generation of microplastics (MPs) owing to physicochemical destruction. The MPs release will pose severe contamination burden on environment and human. In this review, environmental threats of DFMs regarding to DFMs fate in environment and DFMs threats to aquatic and terrestrial species were surveyed. A full summary of recent studies on MPs release from DFMs was provided. The knowledge of extraction and characterizations of MPs, the release behavior, and potential threats of MPs derived from DFMs was discussed. To confront the problem, feasible strategies for control DFMs pollution were analyzed from the perspective of source control and waste management. This review provides a better understanding the threats, fate, and management of DFMs linked to COVID-19 pandemic.


Subject(s)
COVID-19 , Masks , Humans , Microplastics , COVID-19/epidemiology , COVID-19/prevention & control , Plastics , Pandemics/prevention & control
2.
Chemosphere ; 310: 136837, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2068770

ABSTRACT

The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Wastewater , SARS-CoV-2 , Sewage , COVID-19/epidemiology , Silver , Neural Networks, Computer
3.
Chemosphere ; 309(Pt 1): 136748, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2060531

ABSTRACT

The fight against the COVID-19 epidemic significantly raises the global demand for personal protective equipment, especially disposable face masks (DFMs). The discarded DFMs may become a potential source of microplastics (MPs), which has attracted much attention. In this work, we identified the detailed source of MPs released from DFMs with laser direct infrared spectroscopy. Polypropylene (PP) and polyurethane (PU) accounted for 24.5% and 57.1% of released MPs, respectively. The melt-blown fabric was a dominant MPs source, however, previous studies underestimated the contribution of mask rope. The captured polyethylene terephthalate (PET), polyamide (PA), polyethylene (PE), and polystyrene (PS) in airborne only shared 18.4% of released MPs. To deepen the understanding of MPs release from medical mask into the aquatic environment, we investigated the effects of environmental factors on MPs release. Based on regression analysis, the effects of temperature, incubation time, and wearing time significantly affect the release of MPs. Besides, acidity, alkalinity, sodium chloride, and humic acid also contributed to the MPs release through corroding, swelling, or repulsion of fibers. Based on the exposure of medical mask to simulated environments, the number of released MPs followed the order: seawater > simulated gut-fluid > freshwater > pure water. Considering the risk of MPs released from DFMs to the environment, we innovatively established a novel flotation removal system combined with cocoamidopropyl betaine, achieving 86% removal efficiency of MPs in water. This work shed the light on the MPs release from DFMs and proposed a removal strategy for the control of MPs pollution.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Polystyrenes/chemistry , Polypropylenes , Polyethylene Terephthalates , Humic Substances , Masks , Nylons , Polyurethanes , Sodium Chloride , Betaine , Water Pollutants, Chemical/analysis , Polyethylene/chemistry , Water
4.
Journal of Hazardous Materials Advances ; : 100140, 2022.
Article in English | ScienceDirect | ID: covidwho-1966586

ABSTRACT

The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19′s epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.

5.
Chemosphere ; 305: 135247, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1944501

ABSTRACT

The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Feces , Humans , Hyssopus Plant , Sewage , Wastewater
6.
Cleaner Chemical Engineering ; : 100036, 2022.
Article in English | ScienceDirect | ID: covidwho-1881789

ABSTRACT

SARS-CoV-2 has aroused drastic effects on the global economy and public health. In response to this, personal protective equipment, hand hygiene, and social distancing have been considered the most important ways to prevent the direct spread of the virus. SARS-CoV-2 would be possible survive in wastewater for a few days, leading to secondary transmission via contact with water and wastewater. Thus, the most economical and practical approaches for decentralized wastewater treatment are renewable energies such as the solar energy disinfestation process. However, as freshwater requirements increase and fossil fuels become unsustainable, renewable energy becomes more attractive for desalination applications. Solar photovoltaic, membrane-based, and electricity desalination technologies are becoming increasingly popular due to their lower energy requirements. Several aquatic environments could be benefitted from solar energy wastewater disinfection. Besides, utilizing solar energy during the day can inactivate SARS-CoV-2 to nearly 90%. However, conventional membrane-based desalination practices have also been integrated, including reverse osmosis (RO) and electrodialysis (ED). Several exciting membrane processes have been developed recently, including membrane distillation (MD), pressure-reduced osmosis (PRO), and reverse electrodialysis (RED). Such operations can produce clean and sustainable electricity from brine and impaired water, generally considered hazardous to the environment. As a result, neither PRO nor RED can produce electricity without mixing a high salinity solution (such as seawater or brine and wastewater, respectively) with a low salinity solution. Herein, we critically review the progress in applying renewable energy such as solar energy and geothermal energy for generating electricity from wastewater treatment and uniquely discuss the effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment. We also highlight the significant process made on the membrane processes utilizing renewable energy and research gaps from the standpoint of producing clean and sustainable energy. The significant points of this review are: (1) among various types of renewable energy, solar energy and geothermal energy have been predominantly studied for wastewater treatment, (2) effects of these two types of renewable energy on SARS-CoV-2 in air and wastewater treatment are critically analyzed, and (3) the knowledge gaps and anticipated future research outlook have been consequently proposed thereof.

SELECTION OF CITATIONS
SEARCH DETAIL